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Abstract

The e}ect of viscous dissipation on fully!developed mixed convection is analysed for the laminar ~ow in a parallel!
plate vertical channel whose walls exchange heat with an external ~uid[ Both conditions of equal and of di}erent
reference temperatures of the external ~uid are considered[ First\ the simpler cases of either negligible Brinkman number
or negligible Grashof number are solved analytically[ Then\ the combined e}ects of buoyancy forces and of viscous
dissipation are analysed by a perturbation series method[ In the examined cases\ the velocity _eld\ the temperature _eld
and the Nusselt numbers are evaluated[ Þ 0887 Elsevier Science Ltd[ All rights reserved[

Nomenclature

A constant de_ned by equation "02# ðPa m−0Ł
an\ bn\ cn dimensionless coe.cients de_ned by equation
"53#
Bi0\ Bi1 Biot numbers de_ned in equation "08#
Br Brinkman number de_ned in equation "08#
cp speci_c heat at constant pressure ðJ kg−0 K−0Ł
dn dimensionless coe.cients de_ned by equation "55#
D �1L\ hydraulic diameter ðmŁ
F dimensionless parameter de_ned by equation "49#
g acceleration due to gravity ðm s−1Ł
Gr Grashof number de_ned in equation "08#
h0\ h1 external heat transfer coe.cients ðW m−1 K−0Ł
j non!negative integer number
k thermal conductivity ðW m−0 K−0Ł
L channel width ðmŁ
n non!negative integer number
Nu0\ Nu1 Nusselt numbers de_ned by equation "20#
p pressure ðPaŁ
P �p¦r9gX\ di}erence between the pressure and the
hydrostatic pressure ðPaŁ
Pr Prandtl number de_ned in equation "08#
Re Reynolds number de_ned in equation "08#
RT temperature di}erence ratio de_ned in equation "08#
S dimensionless parameter de_ned in equation "08#
T temperature ðKŁ

T0\ T1 reference temperatures of the external ~uid ðKŁ
T9 reference temperature de_ned in equation "19#
u dimensionless velocity in the X!direction\ de_ned in
equation "08#
un"y# dimensionless functions de_ned by equation "41#
u¹ mean value of u de_ned by equation "12#
U velocity component in the X!direction ðm s−0Ł
U9 reference velocity de_ned in equation "19#
U velocity ðm s−0Ł
X streamwise coordinate ðmŁ
y dimensionless transverse coordinate de_ned in equa!
tion "08#
Y transverse coordinate ðmŁ[

Greek symbols
a �k:"r9cp#\ thermal di}usivity ðm1 s−0Ł
b thermal expansion coe.cient ðK−0Ł
DT reference temperature di}erence de_ned either by
equation "10# or by equation "11#
o dimensionless parameter de_ned by equation "40#
u dimensionless temperature de_ned in equation "08#
ub dimensionless bulk temperature de_ned by equation
"13#
m dynamic viscosity ðPa sŁ
n �m:r9\ kinematic viscosity ðm1 s−0Ł
J dimensionless parameter de_ned in equation "08#
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Jc critical value of J for the onset of ~ow reversal
r mass density ðkg m−2Ł
r9 value of the mass density when T � T9 ðkg m−2Ł[

0[ Introduction

Several papers on mixed convection in a parallel!plate
vertical channel are available in the literature[ However\
most of these studies are based on the hypothesis that
the e}ect of viscous dissipation is negligible[ The fully!
developed region has been studied analytically[ For
instance\ the boundary condition of uniform wall tem!
peratures has been analysed by Aung and Worku ð0Ł[
The cases of either uniform temperature or uniform heat
~ux at each boundary surface have been studied by
Cheng\ Kou and Huang ð1Ł and by Hamadah and Wirtz
ð2Ł[ The boundary condition of linearly varying wall tem!
peratures has been considered by Tao ð3Ł[ Some studies
on the developing ~ow have been carried out by numeri!
cal methods[ Aung and Worku ð4\ 5Ł have studied the
developing ~ow with asymmetric wall temperatures ð4Ł
and with asymmetric wall heat ~uxes ð5Ł[ The developing
~ow with asymmetric wall temperatures has been con!
sidered also by Ingham\ Keen and Heggs ð6Ł\ with par!
ticular reference to situations where reverse ~ows occur[
All the studies quoted above\ as well as the references
quoted in the review of the literature on this subject
presented by Aung ð7Ł\ assume that viscous dissipation
e}ects are negligible[ On the other hand\ Barletta ð8Ł and
Zanchini ð09Ł have pointed out that relevant e}ects of
viscous dissipation on the temperature pro_les and on
the Nusselt numbers may occur in the fully!developed
laminar forced convection in tubes[ Thus\ an analysis of
the e}ects of viscous dissipation in the fully!developed
mixed convection in vertical ducts appears as interesting[

Recently\ the laminar mixed convection with viscous
dissipation in the fully!developed region of a parallel!
plate vertical channel has been studied by Barletta ð00Ł[
The author has analysed the boundary condition of uni!
form wall temperatures\ and has considered both di}er!
ent and equal wall temperatures[ The aim of this paper
is to extend the analysis performed in ref[ ð00Ł\ by
assuming that the walls of the channel exchange heat
with an external ~uid[ Both equal and di}erent reference
temperatures of the external ~uid\ as well as both di}erent
and equal Biot numbers\ are considered[ In the limit of
in_nite Biot numbers at both walls\ the solutions
obtained in this paper coincide with those presented in
ref[ ð00Ł[

1[ Mathematical model

In this section\ the momentum balance equation\ the
energy balance equation and the boundary conditions

are settled in a form suitable for the solution of the
problem under examination[ Then\ these equations are
rewritten in dimensionless form[

Let us consider the steady and laminar ~ow of a New!
tonian ~uid in the fully!developed region of a parallel!
plate vertical channel[ The X!axis lies on the axial plane
of the channel\ and its direction is opposite to the gravi!
tational _eld[ The Y!axis is orthogonal to the walls[ The
channel occupies the region of space −L:1 ¾ Y ¾ L:1[
The thermal conductivity\ the thermal di}usivity\ the
dynamic viscosity and the thermal expansion coe.cient
of the ~uid will be assumed to be constant[ As customary\
the Boussinesq approximation and the equation of state

r � r9 ð0−b"T−T9#Ł "0#

will be adopted[ Moreover\ it will be assumed that the
only nonzero component of the velocity _eld U is the X!
component U[ Thus\ since 9 = U� 9\ one has

1U
1X

� 9 "1#

so that U depends only on Y[ The momentum balance
equations along X and Y yield ð01Ł

bg"T−T9#−
0
r9

1P
1X

¦n
d1U

dY1
� 9 "2#

1P
1Y

� 9 "3#

where P � p¦r9gX[ Since\ on account of equation "3#\
P depends only on X\ equation "2# can be rewritten as

T−T9 �
0

bgr9

dP
dX

−
n

bg
d1U

dY1
[ "4#

From equation "4#\ one obtains

1T
1X

�
0

bgr9

d1P

dX1
"5#

1T
1Y

� −
n

bg
d2U

dY2
"6#

11T

1Y1
� −

n

bg
d3U

dY3
[ "7#

Both the walls of the channel will be assumed to have
a negligible thickness and to exchange heat by convection
with an external ~uid[ In particular\ at Y � −L:1 the
external convection coe.cient will be considered as uni!
form with the value h0 and the ~uid in the region
Y ³ −L:1 will be assumed to have a uniform reference
temperature T0[ At Y � L:1 the external convection
coe.cient will be considered as uniform with the value
h1 and the ~uid in the region Y × L:1 will be supposed
to have a uniform reference temperature T1 − T0[ There!
fore\ the boundary conditions on the temperature _eld
can be expressed as
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−k
1T
1Y bY� −L:1

� h0 ðT0−T"X\ −L:1#Ł "8#

−k
1T
1Y bY�L:1

� h1 ðT"X\ L:1#−T1Ł[ "09#

On account of equation "6#\ equations "8# and "09# can
be rewritten as

d2U

dY2 bY� −L:1

�
bgh0

kn
ðT0−T"X\ −L:1#Ł "00#

d2U

dY2 bY�L:1

�
bgh1

kn
ðT"X\ L:1#−T1Ł[ "01#

It is easily veri_ed that equations "00# and "01# imply
that 1T:1X is zero both at Y � −L:1 and at Y � L:1[
Since equation "5# ensures that 1T:1X does not depend
on Y\ one is led to the conclusion that 1T:1X is zero
everywhere[ Therefore\ the temperature T depends only
on Y\ i[e[ T � T"Y#[ Thus\ on account of equation "5#\
there exists a constant A such that

dP
dX

� A[ "02#

For the problem under exam\ the energy balance equa!
tion in the presence of viscous dissipation can be written
as ð01Ł

d1T

dY1
� −

n

acp 0
dU
dY1

1

[ "03#

Equations "7# and "03# yield a di}erential equation for
U\ namely

d3U

dY3
�

bg
acp 0

dU
dY1

1

[ "04#

The boundary conditions on U are

U"−L:1# � U"L:1# � 9 "05#

together with equations "00# and "01#\ which\ on account
of equation "4#\ can be rewritten as

d2U

dY2 bY� −L:1

−
h0

k
d1U

dY1 bY� −L:1

� −
Ah0

km
−

bgh0

kn
"T9−T0#

"06#

d2U

dY2 bY�L:1

¦
h1

k
d1U

dY1 bY�L:1

�
Ah1

km
−

bgh1

kn
"T1−T9#[

"07#

Equations "04#Ð"07# determine the velocity distribution[
They can be written in a dimensionless form by means of
the following dimensionless parameters ]

u �
U
U9

\ u �
T−T9

DT
\ y �

Y
D

\

Gr �
gbDTD2

n1
\ Re �

U9D
n

\ Br �
mU1

9

kDT
\

Pr �
n

a
\ J �

Gr
Re

\ RT �
T1−T0

DT

Bi0 �
h0D
k

\ Bi1 �
h1D
k

\ S �
Bi0 Bi1

Bi0 Bi1¦1Bi0¦1Bi1
[

"08#

In equation "08#\ D � 1L is the hydraulic diameter\ while
the reference velocity U9 and the reference temperature
T9 are given by

U9 � −
AD1

37m

T9 �
T0¦T1

1
¦S 0

0
Bi0

−
0

Bi11"T1−T0#[ "19#

The reference temperature di}erence DT is given either
by

DT � T1−T0 "10#

if T0 ³ T1\ or by

DT �
n1

cpD
1

"11#

if T0 � T1[ Therefore\ as in Ref[ ð00Ł\ the value of the
dimensionless parameter RT can be either 9 or 0[ More
precisely\ RT equals 0 for asymmetric ~uid temperatures\
T0 ³ T1\ and equals 9 for symmetric ~uid temperatures\
T0 � T1[

The dimensionless mean velocity u¹ and the dimen!
sionless bulk temperature ub are given by ð00Ł

u¹ � 1 g
0:3

−0:3

u dy "12#

ub �
1
u¹ g

0:3

−0:3

uu dy[ "13#

On account of equation "02#\ for upward ~ow A ³ 9\ so
that U9\ Re and J are positive[ For downward ~ow A × 9\
while U9\ Re and J are negative[ By employing the dimen!
sionless quantities de_ned in equation "08#\ equations
"04#Ð"07# can be rewritten as

d3u

dy3
� J Br 0

du
dy1

1

"14#

u"−0:3# � u"0:3# � 9 "15#

d1u

dy1 by� −0:3

−
0

Bi0

d2u

dy2 by� −0:3

� −37¦
RTJ

1
S 03¦

0
Bi01

"16#

d1u

dy1 by�0:3

¦
0

Bi1

d2u

dy2 by�0:3

� −37−
RTJ

1
S 03¦

0
Bi11[

"17#

Similarly\ equations "03# and "08# yield



E[ Zanchini:Int[ J[ Heat Mass Transfer 30 "0887# 2838Ð28482841

d1u

dy1
¦Br 0

du
dy1

1

� 9 "18#

while from equations "4# and "08# one obtains

u � −
0
J 037¦

d1u

dy11[ "29#

Equations "14#Ð"29# show that the dimensionless velocity
pro_le and the dimensionless temperature pro_le depend
on _ve parameters ] the ratio J � Gr:Re\ the Brinkman
number Br\ the temperature di}erence ratio RT and the
Biot numbers Bi0 and Bi1[ A Nusselt number can be
de_ned at each boundary\ as follows ]

Nu0 �
D

RT ðT"L:1#−T"−L:1#Ł¦"0−RT#DT
dT
dY bY� −L:1

Nu1 �
D

RT ðT"L:1#−T"−L:1#Ł¦"0−RT#DT
dT
dY bY�L:1

[

"20#

The Nusselt numbers Nu0 and Nu1 can be employed to
evaluate the heat ~uxes at the walls[ In fact\ the heat ~ux
per unit area is given by q0 � −k"dT:dY# =−L:1 at the left
wall\ and by q1 � −k"dT:dY# =L:1 at the right wall[ Let
us _rst assume RT � 0[ Then\ from equation "20# one
obtains

q0 � −
k Nu
D

ðT"L:1#−T"−L:1#Ł

q1 � −
k Nu1

D
ðT"L:1#−T"−L:1#Ł[ "21#

The heat ~ux densities q0 and q1 can be also expressed as

q0 � −h0 ðT"−L:1#−T0Ł

q1 � −h1 ðT1−T"L:1#Ł[ "22#

Equations "21# and "22# yield

T"L:1#−T"−L:1# �
T1−T0

0¦
k
D 0

Nu0

h0

¦
Nu1

h1 1
[ "23#

Let us now assume RT � 9[ Equation "20# yields

q0 � −
k Nu0

D
DT

q1 � −
k Nu1

D
DT "24#

where DT is the reference temperature di}erence de_ned
by equation "11#[ By employing equation "08#\ equation
"20# can be written as

Nu0 �
0

RT ðu"0:3#−u"−0:3#Ł¦"0−RT#
du

dy by� −0:3

Nu1 �
0

RT ðu"0:3#−u"−0:3#Ł¦"0−RT#
du

dy by�0:3

[ "25#

2[ Separated effects of buoyancy forces and viscous

dissipation

In this section\ the simpler cases of either negligible
viscous dissipation or negligible buoyancy forces will be
solved analytically[ As far as the author knows\ these
solutions are not yet available in the literature\ for bound!
ary conditions of the third kind[

The case of negligible viscous dissipation can be
obtained by setting Br � 9 in the dimensionless energy
equation "18#[ As a consequence\ the dimensionless tem!
perature _eld u is independent of the dimensionless vel!
ocity _eld u[ Moreover\ equations "14#Ð"17# can be easily
solved and yield

u � 013¦
SJRTy

2 1 0
0
05

−y11[ "26#

With Bi0 � Bi1 � Bi\ equation "26# can be rewritten as

u � $13¦
Bi JRTy
2"Bi¦3#% 0

0
05

−y11[ "27#

In the limit Bi : ¦�\ one obtains the special case in
which the boundaries of the channel are kept at the tem!
peratures T0 and T1\ respectively[ In this limit\ equation
"08# yields S : 0\ so that equation "26# reduces to

u � 013¦
JRTy

2 1 0
0
05

−y11 "28#

i[e[ to the velocity pro_le determined by Barletta ð00Ł[
By substituting equation "26# in equations "12# and

"13#\ one obtains

u¹ � 0\ ub �
S1JRT

1779
[ "39#

Moreover\ equations "29#\ "25# and "26# yield

u � 1SRTy\ Nu0 � Nu1 � 1RT[ "30#

Equation "30# points out the following results\ in the
limit Br � 9[ For asymmetric ~uid temperatures\ i[e[ for
RT � 0\ heat is transferred by pure conduction ^ for sym!
metric ~uid temperatures\ i[e[ for RT � 9\ the temperature
is uniform and no heat transfer occurs[

For symmetric ~uid temperatures\ for asymmetric ~uid
temperatures with either Bi0 : 9 or Bi1 : 9 and for asym!
metric ~uid temperatures with J � 9\ equation "26# yields
the usual HagenÐPoiseuille velocity pro_le[ Indeed\ as is
shown by equation "30#\ both for symmetric ~uid tem!
peratures and for asymmetric ~uid temperatures with
either Bi0 : 9 or Bi1 : 9\ the temperature is uniform\
so that no buoyancy force can be present[ Finally\ the
hypothesis J � 9 implies Gr � 9\ i[e[ vanishing buoyancy
forces[

As is shown by equation "26#\ in the case of asymmetric
~uid temperatures with dominant buoyancy forces\ i[e[
J : 2�\ the dimensionless velocity u de_ned by equa!
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tion "08# diverges[ Then\ it is convenient to de_ne as
dimensionless velocity the quantity

u
J

�
UD
n Gr

"31#

which is independent of U9[ For J : 2�\ equation "26#
yields the dimensionless velocity pro_le for free con!
vection

u
J

�
Sy
2 0

0
05

−y11[ "32#

Let us now analyse the conditions under which the
buoyancy forces produce a ~ow reversal[ If T0 ³ T1 and
U9 × 9 "upward ~ow#\ equation "26# implies that there
exists a positive critical value Jc such that\ for J × Jc\ a
~ow reversal occurs at y � −0:3[ The value of Jc\ which
can be obtained by setting du:dy � 9 at y � −0:3\ is

Jc �
177
S

[ "33#

If T0 ³ T1 and U9 ³ 9 "downward ~ow#\ equation "26#
ensures that there exists a negative critical value Jc such
that\ for J ³ Jc\ a ~ow reversal occurs at y � 0:3[ This
critical value of J\ obtained by setting du:dy � 9 at
y � 0:3\ is

Jc � −
177
S

[ "34#

Plots of u vs[ y\ evaluated through equation "26#\ are
reported in Fig[ 0 for J � 9\ J � 499 and J � 0999 and
for Bi0 � Bi1 � 09[ With this value of the Biot numbers\
equations "08# and "34# yield Jc � 392[1 Indeed\ in Fig[
0\ the plots for J � 499 and for J � 0999 displays a ~ow
reversal next to the boundary y � −0:3[

Let us now consider the case of negligible buoyancy
forces with a relevant viscous dissipation\ which cor!
responds to J � Gr:Re � 9[ Since a purely forced con!
vection occurs in this case\ the HagenÐPoiseuille velocity
pro_le\

Fig[ 0[ Plots of u vs[ y in the case RT � 0\ for some values of J\
Br � 9 and Bi0 � Bi1 � 09[

u � 130
0
05

−y11 "35#

is present within the channel[ Indeed\ both for symmetric
and for asymmetric ~uid temperatures\ equation "35# is
the solution of equations "14#Ð"29# when J � 9[ Equa!
tions "8#\ "09# and "08# yield the boundary conditions on
u\ i[e[\

du

dy by� −0:3

� Bi0 $
SRT

1 00¦
3

Bi01¦u"−0:3#%
du

dy by�0:3

� Bi1 $
SRT

1 00¦
3

Bi11−u"0:3#%[ "36#

On account of equations "18#\ "35# and "36#\ the tem!
perature pro_le can be expressed as

u � −081Br y3¦1S $RT¦01Br 0
0

Bi1
−

0
Bi01% y

¦
2
3

Br S $
53

Bi0 Bi1
¦09 0

0
Bi0

¦
0

Bi11¦0%[ "37#

Equations "20# and "37# yield

Nu0 � 1
F¦5Br

0¦RT"F−0#
\ Nu1 � 1

F−5Br
0¦RT"F−0#

"38#

where

F � u"0:3#−u"−0:3# � S $RT¦01Br 0
0

Bi1
−

0
Bi01%[

"49#

Equations "38# and "49# ensure that\ for RT � 9\
Nu0 × 9 and Nu1 ³ 9 for every value of Br[ On the other
hand\ for RT � 0\ Nu0 and Nu1 may become singular and
their sign depends on the values of Br\ Bi0 and Bi1[ In
particular\ for Br ³ Bi0:ð5"Bi0¦3#Ł both Nu0 and Nu1

are positive\ while for Br − Bi0:ð5"Bi0¦3#Ł Nu0 × 9 and
Nu1 ¾ 9[ Moreover\ both Nu0 and Nu1 become singular
when F is zero\ i[e[ when Bi1 × Bi0 and Br �
Bi0 Bi1:ð01"Bi1−Bi0#Ł[ Indeed\ in this special case\ Nu0

and Nu1 are singular because u"−0:3# � u"0:3#\ as it is
shown by equation "49#[ Note that\ when Bi1 × Bi0 and
Br × Bi0 Bi1:ð01"Bi1−Bi0#Ł\ one obtains T"−L:1# ×
T"L:1# even if T0 ³ T1[

Plots of u vs[ y for RT � 0 "T0 ³ T1#\ evaluated through
equation "37#\ are reported in Figs 1 and 2\ for some
values of Br[ Figure 1 refers to Bi0 � Bi1 � 09\ while Fig[
2 refers to Bi0 � 0 and Bi1 � 09[ In the latter case\ one
obtains Bi0 Bi1:ð01"Bi1−Bi0#Ł � 4:43 3 9[9815[ Indeed\
in Fig[ 2\ the plots for Br � 9[4 and for Br � 0 are such
that T"−L:1# × T"L:1#[

3[ Combined effects of buoyancy forces and viscous

dissipation

In this section\ both buoyancy forces and viscous dis!
sipation are considered as non!negligible[ First\ equations
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Fig[ 1[ Plots of u vs[ y in the case RT � 0\ for some values of Br\
J � 9 and Bi0 � Bi1 � 09[

Fig[ 2[ Plots of u vs[ y in the case RT � 0\ for some values of Br\
J � 9\ Bi0 � 0 and Bi1 � 09[

"14#Ð"17# are solved by a perturbation series method[
Then\ the dimensionless temperature _eld is determined
by means of equation "29#[

As in ref[ ð00Ł\ let us consider the dimensionless par!
ameter

o � J Br � Re Pr
bgD
cp

"40#

which is independent of the reference temperature di}er!
ence DT[ For _xed values of RT\ J\ Bi0 and Bi1\ the
solution of equations "14#Ð"17# can be expressed by the
perturbation expansion

u"y# � u9"y#¦u0"y#o¦u1"y#o1¦= = = � s
�

n�9

un"y#on[

"41#

To obtain the solution of equations "14#Ð"17# with the
form "41#\ one _rst substitutes equation "41# in equations
"14#Ð"17# and collects terms having like powers of o[
Then\ one equates the coe.cient of each power of o to
zero ð02Ł[ Thus\ one obtains a sequence of boundary

value problems which can be solved in succession and
yield the unknown functions un"y#[

The boundary value problem for n � 9 is

d3u9

dy3
� 9 "42#

u9"−0:3# � u9"0:3# � 9 "43#

d1u9

dy1 by� −0:3

−
0

Bi0

d2u9

dy2 by� −0:3

� −37¦
RTJ

1
S 03¦

0
Bi01 "44#

d1u9

dy1 by�0:3

¦
0

Bi1

d2u9

dy2 by�0:3

� −37−
RTJ

1
S 03¦

0
Bi11[

"45#

The solution of equations "42#Ð"45# is given by

u9"y# � 013¦
SJRTy

2 1 0
0
05

−y11[ "46#

The right!hand side of equation "46# coincides with that
of equation "26# and gives the dimensionless velocity
pro_le in the case Br � 9[

The boundary value problem for every integer n × 9 is

d3un

dy3
� s

n−0

j�9

duj

dy
dun−j−0

dy
"47#

un"−0:3# � un"0:3# � 9 "48#

d1un

dy1 by� −0:3

−
0

Bi0

d2un

dy2 by� −0:3

�
d1un

dy1 by�0:3

¦
0

Bi1

d2un

dy2 by�0:3

� 9[ "59#

Since u9"y# is the known function given by equation "46#\
an iterative solution of equations "47#Ð"59# is possible
and yields the functions un"y#\ n × 9[ As a consequence
of equations "29#\ "41# and "46#\ the dimensionless tem!
perature u can be written in the form

u"y# � 1SRTy−
0
J

s
�

n�0

d1un"y#

dy1
on[ "50#

Equations "25# and "50# yield the following expressions
of Nu0 and Nu1 ]

Nu0 �

1SRT¦ s
�

n�0

ano
n

RT $SRT−0¦ s
�

n�0

cno
n%¦0

"51#

Nu1 �

1SRT¦ s
�

n�0

bno
n

RT $SRT−0¦ s
�

n�0

cno
n%¦0

"52#

where the coe.cients an\ bn and cn are given by
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an � −
0
J

d2un

dy2 by� −0:3

\ bn � −
0
J

d2un

dy2 by�0:3

cn � −
0
J 0

d1un

dy1 by�0:3

−
d1un

dy1 by� −0:31[ "53#

Equations "12#\ "41# and "46# yield the expression of the
mean dimensionless velocity

u¹ � 0¦ s
�

n�0

dno
n "54#

where the coe.cients dn are given by

dn � 1 g
0:3

−0:3

un"y# dy[ "55#

4[ Analysis of the results

By means of the perturbation method described in the
preceding section\ both conditions of asymmetric ~uid
temperatures "T0 ³ T1\ RT � 0# and of symmetric ~uid
temperatures "T0 � T1\ RT � 9# have been analysed[

Let us _rst consider the condition T0 ³ T1\ RT � 0[ In
this case\ u and u depend on the dimensionless parameters
o\ J\ Bi0 and Bi1[ When the ~ow is upward\ o and J
are positive ^ when the ~ow is downward\ o and J are
negative[

Plots of u and u vs[ y for some values of o and
Bi0 � Bi1 � 09 are reported in Figs 3Ð5[ In particular\
Fig[ 3 refers to J � 099\ Fig[ 4 to J � 499 and Fig[ 5 to
J � −299[ The number of terms of the perturbation
series which is su.cient to attain convergence depends
both on J and on o[ The plots which appear in Fig[ 3
have been obtained with 19 terms of the perturbation
series\ the plots in Fig[ 4 with 29 terms and those in Fig[
5 with 14 terms[ Figures 3 and 4 show that\ for upward
~ow\ both the dimensionless velocity and the dimen!
sionless temperature\ at each position\ are increasing
functions of o[ Moreover\ the e}ect of o on u is stronger
for higher values of J\ while that on u is weaker[ Figure
5 shows that\ for downward ~ow\ at each position u is a
decreasing function of =o=\ while u is an increasing func!
tion of =o=[ The e}ect of o on u and u is stronger for upward
~ow than for downward ~ow[ The results reported in
Figs 3Ð5 can be explained qualitatively as follows[ A
stronger viscous dissipation causes higher ~uid tem!
peratures and\ as a consequence\ higher values of the
buoyancy force[ The increase of the buoyancy!force
values yields an increase of the ~uid velocity when the
~ow is upward and a decrease of the ~uid velocity when
the ~ow is downward[

In Fig[ 6\ Nu0 and Nu1 are plotted vs[ =o= for
Bi0 � Bi1 � 09 and for three values of J[ Figure 6 reveals
that Nu0 is an increasing function of =o=\ while Nu1 is a
decreasing function of =o=[ Moreover\ it shows that\ for

Fig[ 3[ Plots of u and u vs[ y in the case RT � 0\ for some values
of o\ J � 099 and Bi0 � Bi1 � 09[

Fig[ 4[ Plots of u and u vs[ y in the case RT � 0\ for some values
of o\ J � 499 and Bi0 � Bi1 � 09[
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Fig[ 5[ Plots of u and u vs[ y in the case RT � 0\ for some values
of o\ J � −299 and Bi0 � Bi1 � 09[

Fig[ 6[ Plots of Nu0 and Nu1 vs[ the absolute value of o in the
case RT � 0\ for some values of J and Bi0 � Bi1 � 09[

upward ~ow\ the e}ect of o on Nu0 and on Nu1 is stronger
for lower values of J[ In Fig[ 7\ u¹ is plotted vs[ =o= for
Bi0 � Bi1 � 09 and for three values of J[ As one expects\
u¹ is an increasing function of =o= when the ~ow is upward\
while it is a decreasing function of =o= when the ~ow is
downward[ For upward ~ow\ the e}ect of o on u¹ is
stronger for higher values of J[

In Fig[ 8\ plots of u and u vs[ y with Bi0 � 9[0 and
Bi1 � 09 are reported for some values of o[ The plots

Fig[ 7[ Plots of u¹ vs[ the absolute value of o in the case RT � 0
for some values of J and Bi0 � Bi1 � 09[

Fig[ 8[ Plots of u and u vs[ y in the case RT � 0\ for some values
of o\ J � 299\ Bi0 � 9[0 and Bi1 � 09[



E[ Zanchini:Int[ J[ Heat Mass Transfer 30 "0887# 2838Ð2848 2846

which appear in Fig[ 8 refer to J � 299 and are obtained
with 16 terms of the perturbation series[ Figure 8 shows
that\ when o increases\ u increases more at y � −0:3 than
at y � 0:3\ i[e[\ u increases more at the wall which has the
smaller external!convection coe.cient[ In particular\ for
o � 0[4 and o � 0[7\ the temperature at y � −0:3 exceeds
that at y � 0:3\ although T0 ³ T1[ A comparison between
Fig[ 8 and Figs 5Ð6 reveals that the e}ect of o on u and
on u\ for a _xed value of J\ becomes stronger if either Bi0
or Bi1 becomes smaller[

Let us now consider the condition T0 � T1\ RT � 9[
Equations "14#Ð"17# show that the dimensionless velocity
u is a function of y which depends only on the dimen!
sionless parameters o\ Bi0 and Bi1[ Therefore\ on account
of equation "29#\ also Ju is a function of y which depends
only on o\ Bi0 and Bi1[ Moreover\ equation "25# ensures
that J Nu0 and J Nu1 are uniquely determined by o\ Bi0
and Bi1[ As in the case of asymmetric ~uid temperatures\
both o and J are positive when the ~ow is upward\ while
they are negative when the ~ow is downward[

In Figs 09 and 00\ the dimensionless velocity u and the
product Ju are plotted vs[ y for some values of o[ Figure
09 refers to Bi0 � Bi1 � 09\ while Fig[ 00 refers to
Bi0 � 9[0 and Bi1 � 09[ Figures 09 and 00 show that\ at
any given position\ both u and Ju are increasing functions
of o[ As in the case of asymmetric ~uid temperatures\ the
e}ect of viscous dissipation on the dimensionless velocity
pro_le and on the dimensionless temperature pro_le is

Fig[ 09[ Plots of u and Ju vs[ y in the case RT � 9\ for some
values of o and Bi0 � Bi1 � 09[

Fig[ 00[ Plots of u and Ju vs[ y in the case RT � 9\ for some
values of o\ Bi0 � 9[0 and Bi1 � 09[

more signi_cant in the case of upward ~ow "o × 9# than
in the case of downward ~ow "o ³ 9#\ and becomes
stronger if either Bi0 or Bi1 becomes smaller[

Clearly\ when Bi0 � Bi1 the dimensionless temperature
pro_le is symmetric\ so that\ on account of equation "25#\
Nu0 � Nu1 � Nu[ Values of J Nu for this condition are
reported in Table 0 for several values of o and Bi[ The
table shows that J Nu is an increasing function of o for
every value of Bi\ and that the e}ect of o on J Nu becomes
stronger when the Biot number becomes lower[ Finally\
the e}ect of o on J Nu is more important for upward ~ow
than for downward ~ow[ The values of J Nu reported in
Table 0 have been obtained with 29 terms of the per!
turbation series for Bi − 19\ with 24 terms for Bi � 09\
and with 35 terms for Bi � 6[ In each case\ evaluations
with 16\ 21 and 32 perturbation terms\ respectively for
Bi − 19\ Bi � 09 and Bi � 6\ have given the same results
as those reported in Table 0\ at least for the digits which
appear in the table[ The results obtained for Bi � 094 are
in perfect agreement with those reported in ref[ ð00Ł for
the boundary condition of prescribed wall temperatures[

5[ Conclusions

The laminar and fully developed mixed convection
with viscous dissipation in a plane vertical channel has
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Table 0
Values of J Nu as a function of o and Bi\ for RT � 9 and Bi0 � Bi1 "completely symmetric case#

Bi � 094 Bi � 49 Bi � 19 Bi � 09 Bi � 6
o J Nu J Nu J Nu J Nu J Nu

−3[9 −32[100 −30[689 −28[747 −26[961 −24[916
−2[4 −27[164 −26[038 −24[592 −22[232 −20[559
−2[9 −22[108 −21[251 −20[062 −18[398 −17[966
−1[4 −17[925 −16[319 −15[443 −14[149 −13[138
−1[9 −11[611 −11[202 −10[620 −19[739 −19[032
−0[4 −06[158 −06[929 −05[574 −05[037 −04[619
−0[9 −00[558 −00[448 −00[287 −00[030 −09[821
−9[4 −4[805 −4[776 −4[734 −4[664 −4[607

9[9 9[999 9[999 9[999 9[999 9[999
9[4 5[976 5[008 5[055 5[137 5[219
0[9 01[245 01[376 01[589 02[937 02[264
0[4 07[706 08[014 08[501 19[388 10[235
1[9 14[371 15[945 15[872 17[622 29[380
1[4 21[254 22[295 23[759 26[812 30[085
2[9 28[367 39[893 32[204 37[298 43[967
2[4 35[728 37[774 41[326 59[127 69[120
3[9 43[353 46[175 51[224 63[123 80[895

been analysed[ The boundary condition of convective
heat exchange with an external ~uid at each boundary
plane has been considered[ The simpler cases of either
negligible viscous dissipation or negligible buoyancy
forces have been solved analytically[ The combined
e}ects of buoyancy forces and viscous dissipation have
been studied by a perturbation series method[ The pure
number o � Br Gr:Re has been chosen as the perturbation
parameter[ Both the case of asymmetric ~uid tem!
peratures "RT � 0#\ with either equal or di}erent Biot
numbers\ and the case of symmetric ~uid temperatures
"RT � 9#\ with either equal or di}erent Biot numbers\
have been considered[ The results can be summarized as
follows[ For upward ~ow\ both the dimensionless vel!
ocity u and the dimensionless temperature u\ at each
position\ are increasing function of o\ i[e[\ of the viscous!
dissipation parameter[ The e}ect of o on u\ on u and on
the Nusselt numbers increases when at least one of the
Biot number decreases[ For downward ~ow\ at each pos!
ition\ u is a decreasing function of =o= while u is an increas!
ing function of =o=[ The e}ect of o on u\ on u and on the
Nusselt numbers is more relevant for upward ~ow than
for downward ~ow[ In the completely symmetric case
"RT � 9\Bi0 � Bi1# the value of J Nu is uniquely deter!
mined by o and Bi[ A table of J Nu as a function of o and
Bi has been reported[ The table shows that\ for each
value of Bi\ J Nu is an increasing function of o\ both for
downward and for upward ~ow[ The e}ect of o on J Nu
for upward ~ow is more relevant than that for downward
~ow\ and becomes stronger when the Biot number
decreases[
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