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Abstract

The effect of viscous dissipation on fully-developed mixed convection is analysed for the laminar flow in a parallel-
plate vertical channel whose walls exchange heat with an external fluid. Both conditions of equal and of different
reference temperatures of the external fluid are considered. First, the simpler cases of either negligible Brinkman number
or negligible Grashof number are solved analytically. Then, the combined effects of buoyancy forces and of viscous
dissipation are analysed by a perturbation series method. In the examined cases, the velocity field, the temperature field
and the Nusselt numbers are evaluated. © 1998 Elsevier Science Ltd. All rights reserved.

Nomenclature

A constant defined by equation (13) [Pam™']

a,, b,, ¢, dimensionless coefficients defined by equation
(64)

Bi,, Bi, Biot numbers defined in equation (19)

Br Brinkman number defined in equation (19)

¢, specific heat at constant pressure [J kg ' K ']

d, dimensionless coefficients defined by equation (66)
D =2L, hydraulic diameter [m]

F dimensionless parameter defined by equation (50)

g acceleration due to gravity [m s=7]

Gr Grashof number defined in equation (19)

hy, hy external heat transfer coefficients [W m =2 K 7'
j non-negative integer number

k thermal conductivity [W m~' K ']

L channel width [m]

n non-negative integer number

Nu,, Nu, Nusselt numbers defined by equation (31)

p pressure [Pa]

P =p+pgX, difference between the pressure and the
hydrostatic pressure [Pa]

Pr  Prandtl number defined in equation (19)

Re Reynolds number defined in equation (19)

R, temperature difference ratio defined in equation (19)
S dimensionless parameter defined in equation (19)

T temperature [K]
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T,, T, reference temperatures of the external fluid [K]
T, reference temperature defined in equation (20)

u dimensionless velocity in the X-direction, defined in
equation (19)

u,(y) dimensionless functions defined by equation (52)
i mean value of u defined by equation (23)

U velocity component in the X-direction [m s~']

U, reference velocity defined in equation (20)

U velocity [ms™']

X streamwise coordinate [m]

y dimensionless transverse coordinate defined in equa-
tion (19)

Y transverse coordinate [m].

Greek symbols

o =k/(poc,), thermal diffusivity [m®s™']

B thermal expansion coefficient [K ~']

AT reference temperature difference defined either by
equation (21) or by equation (22)

¢ dimensionless parameter defined by equation (51)

0 dimensionless temperature defined in equation (19)
0, dimensionless bulk temperature defined by equation
(24

dynamic viscosity [Pa s]

= u/p,, kinematic viscosity [m? s™']

dimensionless parameter defined in equation (19)

=

v
=
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=2, critical value of Z for the onset of flow reversal
p mass density [kg m~7]
po value of the mass density when T = T, [kg m 7).

1. Introduction

Several papers on mixed convection in a parallel-plate
vertical channel are available in the literature. However,
most of these studies are based on the hypothesis that
the effect of viscous dissipation is negligible. The fully-
developed region has been studied analytically. For
instance, the boundary condition of uniform wall tem-
peratures has been analysed by Aung and Worku [1].
The cases of either uniform temperature or uniform heat
flux at each boundary surface have been studied by
Cheng, Kou and Huang [2] and by Hamadah and Wirtz
[3]. The boundary condition of linearly varying wall tem-
peratures has been considered by Tao [4]. Some studies
on the developing flow have been carried out by numeri-
cal methods. Aung and Worku [5, 6] have studied the
developing flow with asymmetric wall temperatures [5]
and with asymmetric wall heat fluxes [6]. The developing
flow with asymmetric wall temperatures has been con-
sidered also by Ingham, Keen and Heggs [7], with par-
ticular reference to situations where reverse flows occur.
All the studies quoted above, as well as the references
quoted in the review of the literature on this subject
presented by Aung [8], assume that viscous dissipation
effects are negligible. On the other hand, Barletta [9] and
Zanchini [10] have pointed out that relevant effects of
viscous dissipation on the temperature profiles and on
the Nusselt numbers may occur in the fully-developed
laminar forced convection in tubes. Thus, an analysis of
the effects of viscous dissipation in the fully-developed
mixed convection in vertical ducts appears as interesting.

Recently, the laminar mixed convection with viscous
dissipation in the fully-developed region of a parallel-
plate vertical channel has been studied by Barletta [11].
The author has analysed the boundary condition of uni-
form wall temperatures, and has considered both differ-
ent and equal wall temperatures. The aim of this paper
is to extend the analysis performed in ref. [11], by
assuming that the walls of the channel exchange heat
with an external fluid. Both equal and different reference
temperatures of the external fluid, as well as both different
and equal Biot numbers, are considered. In the limit of
infinite Biot numbers at both walls, the solutions
obtained in this paper coincide with those presented in
ref. [11].

2. Mathematical model

In this section, the momentum balance equation, the
energy balance equation and the boundary conditions

are settled in a form suitable for the solution of the
problem under examination. Then, these equations are
rewritten in dimensionless form.

Let us consider the steady and laminar flow of a New-
tonian fluid in the fully-developed region of a parallel-
plate vertical channel. The X-axis lies on the axial plane
of the channel, and its direction is opposite to the gravi-
tational field. The Y-axis is orthogonal to the walls. The
channel occupies the region of space —L/2 < Y < L/2.
The thermal conductivity, the thermal diffusivity, the
dynamic viscosity and the thermal expansion coefficient
of the fluid will be assumed to be constant. As customary,
the Boussinesq approximation and the equation of state

p = po[1=B(T—T,)] M
will be adopted. Moreover, it will be assumed that the
only nonzero component of the velocity field U is the X-
component U. Thus, since V+U = 0, one has

w
X
so that U depends only on Y. The momentum balance
equations along X and Y yield [12]

=0 )

1oP d*U
/i;'(T—To)—p*O07(+de2 =0 (©)
opP
ay =" 4)

where P = p+ pygX. Since, on account of equation (4),
P depends only on X, equation (3) can be rewritten as

1 dPp v d*U
—Tym e om s)
BgpodX  Pgdy>
From equation (5), one obtains
oT 1 d*p
== (©)
X Pgpo dx>
oT v &*U
= )
oYy Pgdy?
0*T v d*U
- ®)

oy?  Bedy*

Both the walls of the channel will be assumed to have
a negligible thickness and to exchange heat by convection
with an external fluid. In particular, at ¥ = —L/2 the
external convection coefficient will be considered as uni-
form with the value /1, and the fluid in the region
Y < — L/2 will be assumed to have a uniform reference
temperature 7,. At Y = L/2 the external convection
coefficient will be considered as uniform with the value
h, and the fluid in the region Y > L/2 will be supposed
to have a uniform reference temperature 7, > T,. There-
fore, the boundary conditions on the temperature field
can be expressed as
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oT

—ka—y T [T, —T(X, —L/2)] )
or

~kay - I [T(X, L2)—T]. (10)

On account of equation (7), equations (9) and (10) can
be rewritten as

'y Bgh,

= T,—T(X,—LJ2 1
FEz] e TRl an
d*u Bgh:
dy3 Y=12 = kV [T(X, L/z)—Tz] (12)

It is easily verified that equations (11) and (12) imply
that 07/0X is zero both at Y= —L/2 and at Y = L/2.
Since equation (6) ensures that 07/0X does not depend
on Y, one is led to the conclusion that 07/0X is zero
everywhere. Therefore, the temperature 7 depends only
on Y, i.e. T= T(Y). Thus, on account of equation (6),
there exists a constant 4 such that

ar _
dx
For the problem under exam, the energy balance equa-

tion in the presence of viscous dissipation can be written
as [12]

d’T dU\?

= (). (14)
dy? ac, \dY
Equations (8) and (14) yield a differential equation for
U, namely

A (13)

d*Uu dU\?

_ Pg (dU _ (15)
dy* oc, \dY
The boundary conditions on U are
U(—L]2)=UL/2)=0 (16)

together with equations (11) and (12), which, on account
of equation (5), can be rewritten as

Y h U Ahy fgh,

— = — — T,—T
dY?|y=—1n k qy?|y- —L2 ku kv (To 1)
17
d*U h, d*U Al h
ke S T )
dY3|y=12 k dy?|y_in ku kv
(18)

Equations (15)—(18) determine the velocity distribution.
They can be written in a dimensionless form by means of
the following dimensionless parameters :

U, T, Y
u= UO’ - AT s y - Da
gBATD? U,D uU3
R Ll - Br —
Gr="m s Re=— o Br=jo

Pr= Yoo g _IL-T,
o’ Re’ ! AT
g D g Do Bi, Bi,
k k Bi, Bi,+2Bi, +2Bi,

(19)
In equation (19), D = 2L is the hydraulic diameter, while
the reference velocity U, and the reference temperature
T, are given by

[ _AD?
T 48y
T,+T, 11
T, == +S<Bi, —Biz>(T3—T,). (20)

The reference temperature difference AT is given either
by

AT=T,-T, (21)
if T, < T, or by

2
v

¢,D?

if T, = T,. Therefore, as in Ref. [11], the value of the
dimensionless parameter R; can be either 0 or 1. More
precisely, R, equals 1 for asymmetric fluid temperatures,
T, < T,, and equals 0 for symmetric fluid temperatures,
T, =T,

The dimensionless mean velocity # and the dimen-
sionless bulk temperature 0, are given by [11]

AT =

(22)

1/4
i= 2[ udy (23)

2 (14
0, = iJ uf dy. (24)
U _ 14

On account of equation (13), for upward flow 4 < 0, so
that U,, Re and E are positive. For downward flow 4 > 0,
while U,, Re and E are negative. By employing the dimen-
sionless quantities defined in equation (19), equations
(15)—(18) can be rewritten as

d* 2

St =B <@> 25)

dy* dy

d’ S R,E I

Cul e TSG+fJ

d.y2 = —1/4 Bi, dy3 = —1/4 2 Bi,
27

d? 1 d R,E 1

- +7.7u = 48— S<4+7'>.
d}’z y=1/4 Bi, dy3 y=1/4 2 Bi,

(28)
Similarly, equations (14) and (19) yield
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d*0 du\?
S 4+ Br (—“) =0 (29)
dy? dy
while from equations (5) and (19) one obtains
1 d?
[ —— (48+ “> (30)
= dy?

Equations (25)—(30) show that the dimensionless velocity
profile and the dimensionless temperature profile depend
on five parameters: the ratio & = Gr/Re, the Brinkman
number Br, the temperature difference ratio R, and the
Biot numbers Bi;, and Bi,. A Nusselt number can be
defined at each boundary, as follows:

Nu, = D ar

T RAT(L2) — T(— L))+ (1—R)ATAY|,_ ,,
Nu, = D g

T RAT(LR) = T(— L)1+ (I —R)ATAY|,_, )

(31
The Nusselt numbers Nu;, and Nu, can be employed to
evaluate the heat fluxes at the walls. In fact, the heat flux
per unit area is given by ¢, = —k(dT/dY)|_,, at the left
wall, and by ¢, = —k(dT/dY)|,,, at the right wall. Let
us first assume R; = 1. Then, from equation (31) one
obtains

k Ni
g1 = =5 (TR~ T(~L]2)]
k Ni
4: = = T2~ T(~L2)]. (32)

The heat flux densities ¢, and ¢, can be also expressed as

¢ = —M[T(—=L/2)—T]
g2 = — [T, —T(L/2)]. (33)
Equations (32) and (33) yield
T,—T,
2)—T(—LJ2) = . 4
TR T = (34)
D\ I h,

Let us now assume R; = 0. Equation (31) yields

k Nu
q, = _TIAT

k Nu
¢ =— TZAT (35)

where AT is the reference temperature difference defined
by equation (22). By employing equation (19), equation
(31) can be written as

- | w
" RO 0~ U]+ (1~ R dy),_ s

Nu, = ! % 36
U = R0 0 ARy dy|, . Y

3. Separated effects of buoyancy forces and viscous
dissipation

In this section, the simpler cases of either negligible
viscous dissipation or negligible buoyancy forces will be
solved analytically. As far as the author knows, these
solutions are not yet available in the literature, for bound-
ary conditions of the third kind.

The case of negligible viscous dissipation can be
obtained by setting Br = 0 in the dimensionless energy
equation (29). As a consequence, the dimensionless tem-
perature field 0 is independent of the dimensionless vel-
ocity field u. Moreover, equations (25)—(28) can be easily
solved and yield

SER\ [ 1 5
u—<24+ 3 )(16—)/ . 37
With Bi, = Bi, = Bi, equation (37) can be rewritten as
B BiERy (1
“= [24+3(Bi+4)} <16 ) (38)

In the limit Bi —» + oo, one obtains the special case in
which the boundaries of the channel are kept at the tem-
peratures T, and T, respectively. In this limit, equation
(19) yields S — 1, so that equation (37) reduces to

_ 2Ry i_2
u—<24+ 3 ><16 y) (39)

i.e. to the velocity profile determined by Barletta [11].
By substituting equation (37) in equations (23) and
(24), one obtains

_ S?ER;

=1, 0,= 7880 (40)
Moreover, equations (30), (36) and (37) yield

0 =2SR;y, Nu, = Nu, =2R;. 41)

Equation (41) points out the following results, in the
limit Br = 0. For asymmetric fluid temperatures, i.e. for
R; =1, heat is transferred by pure conduction ; for sym-
metric fluid temperatures, i.e. for R, = 0, the temperature
is uniform and no heat transfer occurs.

For symmetric fluid temperatures, for asymmetric fluid
temperatures with either Bi; — 0 or Bi, — 0 and for asym-
metric fluid temperatures with 2 = 0, equation (37) yields
the usual Hagen—Poiseuille velocity profile. Indeed, as is
shown by equation (41), both for symmetric fluid tem-
peratures and for asymmetric fluid temperatures with
either Bi; » 0 or Bi, —» 0, the temperature is uniform,
so that no buoyancy force can be present. Finally, the
hypothesis E = 0 implies Gr = 0, i.e. vanishing buoyancy
forces.

As is shown by equation (37), in the case of asymmetric
fluid temperatures with dominant buoyancy forces, i.e.
2 — + o0, the dimensionless velocity u defined by equa-
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tion (19) diverges. Then, it is convenient to define as
dimensionless velocity the quantity
u_ UD

E vGr

which is independent of U,. For E — + o0, equation (37)
yields the dimensionless velocity profile for free con-
vection

Sy (1 )
= 3<16—y > (43)
Let us now analyse the conditions under which the
buoyancy forces produce a flow reversal. If 7, < T, and

U, > 0 (upward flow), equation (37) implies that there
exists a positive critical value E, such that, for E > E,, a

(42)

nl =

flow reversal occurs at y = —1/4. The value of E_, which
can be obtained by setting du/dy = 0aty = —1/4,is
288
E.=—- 44
=5 (44)

If T, < T, and U, < 0 (downward flow), equation (37)
ensures that there exists a negative critical value E, such
that, for E < E,, a flow reversal occurs at y = 1/4. This
critical value of =, obtained by setting du/dy =0 at
y=1/4,is

_ 288
B = 5
Plots of u vs. y, evaluated through equation (37), are
reported in Fig. 1 for E = 0, E = 500 and E = 1000 and
for Bi, = Bi, = 10. With this value of the Biot numbers,
equations (19) and (45) yield E, = 403.2 Indeed, in Fig.
1, the plots for E = 500 and for & = 1000 displays a flow
reversal next to the boundary y = —1/4.

Let us now consider the case of negligible buoyancy
forces with a relevant viscous dissipation, which cor-
responds to E = Gr/Re = 0. Since a purely forced con-
vection occurs in this case, the Hagen—Poiseuille velocity
profile,

(45)

25
, Bi,=Bi,= 10
15
u 1 @
E=0
®
0.5 (b) E=500
0 © ==1000
N
05 ‘
02 01 0 0.1 02

y

Fig. 1. Plots of u vs. y in the case R; = 1, for some values of =,
Br =0 and Bi; = Bi, = 10.

1
=24— —)? 4
u (1 s ) (46)
is present within the channel. Indeed, both for symmetric
and for asymmetric fluid temperatures, equation (46) is

the solution of equations (25)—(30) when E = 0. Equa-
tions (9), (10) and (19) yield the boundary conditions on

0,i.e.,
SR, 4
_le[ . <1+B—il>+9(—1/4)}
do

do
. | SRy 4
) = Bi, [ 5 (1 + B—i2>79(1/4)} 47)

On account of equations (29), (46) and (47), the tem-
perature profile can be expressed as

11
_ .4 " _ 5
0= —192Bry*+28 [Rﬁ— 12B; (Biz Bi‘ﬂ )

T a1y (L T (48)
47" | Bi, Bi, Bi, " Bi, :

Equations (31) and (48) yield

Nuy =2 LEOBr oy EEOBT )
1+ R (F-1)’ 1+ R (F—1)
where
F=0(1/4—0(—1/4) =S [RT—i— 12Br <L — L)}
Bi, Bi,
(50)

Equations (49) and (50) ensure that, for R; =0,
Nu, > 0 and Nu, < 0 for every value of Br. On the other
hand, for R, = 1, Nu, and Nu, may become singular and
their sign depends on the values of Br, Bi; and Bi,. In
particular, for Br < Bi,/[6(Bi,+4)] both Nu, and Nu,
are positive, while for Br > Bi,/[6(Bi;+4)] Nu; > 0 and
Nu, < 0. Moreover, both Nu, and Nu, become singular
when F is zero, i.e. when Bi,> Bi, and Br=
Bi, Bi,/[12(Bi,— Bi,)]. Indeed, in this special case, Nu,
and Nu, are singular because 0(—1/4) = 0(1/4), as it is
shown by equation (50). Note that, when Bi, > Bi, and
Br > Bi, Bi,/[12(Bi,— Bi})], one obtains 7T(—L/2) >
T(L/2) evenif T}, < T,.

Plotsof O vs. y for R, = 1 (T, < T,), evaluated through
equation (48), are reported in Figs 2 and 3, for some
values of Br. Figure 2 refers to Bi; = Bi, = 10, while Fig.
3 refers to Bi, = 1 and Bi, = 10. In the latter case, one
obtains Bi, Bi,/[12(Bi,— Bi;)] = 5/54 =~ 0.0926. Indeed,
in Fig. 3, the plots for Br = 0.5 and for Br = 1 are such
that T(—L/2) > T(L/2).

4. Combined effects of buoyancy forces and viscous
dissipation

In this section, both buoyancy forces and viscous dis-
sipation are considered as non-negligible. First, equations
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2+
Biy=Bi,=10

15| ©
0 1 _/,_'\ ]
® (@) Br=0
sl (b) Br=05
) (©) Br=1
0
(a
-0.2 -0.1 0 0.1 0.2

Fig. 2. Plots of 0 vs. y in the case R; = 1, for some values of Br,
Z =0 and Bi, = Bi, = 10.

5./\
Biy=1

4r | Bi,=10 ©

————————~—__-~‘~_~

o (b) ]
@@ Br=0 \
() Br=05 ]

(©) Br=1

-

(a)

-0.2 -0.1 0 0.1 0.2
y

Fig. 3. Plots of 0 vs. y in the case R; = 1, for some values of Br,
E =0, Bi, =1 and Bi, = 10.

(25)—(28) are solved by a perturbation series method.
Then, the dimensionless temperature field is determined
by means of equation (30).

As in ref. [11], let us consider the dimensionless par-
ameter

BgD 1)

which is independent of the reference temperature differ-
ence AT. For fixed values of R, E, Bi, and Bi,, the
solution of equations (25)—(28) can be expressed by the
perturbation expansion

¢ =EBr= RePr

u(y) = ug(y) +u (Me+uw(Ne+ = Y u,(n)e".
n=0

(52)
To obtain the solution of equations (25)—(28) with the
form (52), one first substitutes equation (52) in equations
(25)—(28) and collects terms having like powers of .
Then, one equates the coefficient of each power of ¢ to
zero [13]. Thus, one obtains a sequence of boundary

value problems which can be solved in succession and
yield the unknown functions u,(y).
The boundary value problem for n = 0 is

d4
o _ g (53)
dy*
ug(—1/4) = uo(1/4) =0 (54)
d?u, _Ld%{o
dy? =14 Biy dy? = 14
— g gy L (55)
B 2 Bi,
d? 1 d R,E 1
fof oy St) g B S(4+—,>.
dy? [i=1a Bi2 dy® =1 2 Bi,

(56)
The solution of equations (53)—(56) is given by

SER N\ (1
uo<y)=<24+ ; y><ﬁ—y~>. (57)

The right-hand side of equation (57) coincides with that
of equation (37) and gives the dimensionless velocity
profile in the case Br = 0.

The boundary value problem for every integer n > 0 is

d*u, Zdu;du, ;o

dy* - Sody dy 9
u,(—1/4) = u,(1/4) =0 (59)
d?u, 1 d’u,
dy2 _):7”4_371'1 dy3 = —1/4
_ d?u, L.d%‘” —0. (60)
dy? =14 Bi, dy? =14

Since u,(y) is the known function given by equation (57),
an iterative solution of equations (58)—(60) is possible
and yields the functions u,(y), n > 0. As a consequence
of equations (30), (52) and (57), the dimensionless tem-
perature 0 can be written in the form
1 & du,(y) ,
—".

0(y) = 2SRy — = ).

61
—n=1 dy2 ( )

Equations (36) and (61) yield the following expressions
of Nu, and Nu,:

2SR+ Y a,e”

n

=1
R, |:SRT— 1+ Z c,,a”}—f— 1
n=1

Nu, = (62)

2SR+ Y bye
1

n=

Nu, = (63)

Ry [SRT—H- Y cna”}i—l
n=1

where the coefficients a,, b, and ¢, are given by
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1 d*u, 1 d3u,
T
= dy3 y=—1/4 = dy3 y=1/4
1 (d’u, d’u,
6= -2 <—“ == ) (64)
2\dy? h=is dy? =14

Equations (23), (52) and (57) yield the expression of the
mean dimensionless velocity

a=1+Y de (65)
n=1
where the coefficients d, are given by

1/4
d, = ZJ u, () dy. (66)
—1/4

5. Analysis of the results

By means of the perturbation method described in the
preceding section, both conditions of asymmetric fluid
temperatures (7; < T,, Ry = 1) and of symmetric fluid
temperatures (7, = T,, Ry = 0) have been analysed.

Let us first consider the condition 7, < T,, Ry = 1. In
this case, # and 0 depend on the dimensionless parameters
e, 2, Bi; and Bi,. When the flow is upward, ¢ and E
are positive; when the flow is downward, ¢ and E are
negative.

Plots of u and 0 vs. y for some values of ¢ and
Bi, = Bi, = 10 are reported in Figs 4-6. In particular,
Fig. 4 refers to E = 100, Fig. 5 to E = 500 and Fig. 6 to
E = —300. The number of terms of the perturbation
series which is sufficient to attain convergence depends
both on E and on ¢. The plots which appear in Fig. 4
have been obtained with 20 terms of the perturbation
series, the plots in Fig. 5 with 30 terms and those in Fig.
6 with 25 terms. Figures 4 and 5 show that, for upward
flow, both the dimensionless velocity and the dimen-
sionless temperature, at each position, are increasing
functions of ¢&. Moreover, the effect of ¢ on u is stronger
for higher values of E, while that on 0 is weaker. Figure
6 shows that, for downward flow, at each position u is a
decreasing function of |¢|, while 6 is an increasing func-
tion of |¢|. The effect of ¢ on « and 0 is stronger for upward
flow than for downward flow. The results reported in
Figs 4-6 can be explained qualitatively as follows. A
stronger viscous dissipation causes higher fluid tem-
peratures and, as a consequence, higher values of the
buoyancy force. The increase of the buoyancy-force
values yields an increase of the fluid velocity when the
flow is upward and a decrease of the fluid velocity when
the flow is downward.

In Fig. 7, Nu, and Nu, are plotted vs. |¢| for
Bi, = Bi, = 10 and for three values of E. Figure 7 reveals
that Nu, is an increasing function of |¢|, while Nu, is a
decreasing function of |¢|. Moreover, it shows that, for

25

Biy=Bi,=10
E =100

0.2 0.1 0 0.1 0.2
y

Fig. 4. Plots of u and 0 vs. y in the case R; = 1, for some values
of &, E = 100 and Bi, = Bi, = 10.

25

05 Bi;=Bi,=10
= =500

0.4
0.3
0.2
0.1

02 0.1 0 0.1 0.2
y

Fig. 5. Plots of u and 0 vs. y in the case R; = 1, for some values
of ¢, E = 500 and Bi, = Bi, = 10.
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Biy=Bi,=10
E=-300

Fig. 6. Plots of # and 0 vs. y in the case R; = 1, for some values

of &, E = —300 and Bi, = Bi, = 10.

3.4

Biy=Bi,=10

lel

Fig. 7. Plots of Nu, and Nu, vs. the absolute value of ¢ in the
case R, = 1, for some values of = and Bi, = Bi, = 10.

upward flow, the effect of ¢ on Nu, and on Nu, is stronger
for lower values of E. In Fig. 8, @ is plotted vs. |¢| for
Bi, = Bi, = 10 and for three values of Z. As one expects,
i1 1s an increasing function of |¢| when the flow is upward,
while it is a decreasing function of |¢| when the flow is
downward. For upward flow, the effect of ¢ on @ is
stronger for higher values of Z.

In Fig. 9, plots of u and 6 vs. y with Bi; = 0.1 and
Bi, = 10 are reported for some values of ¢. The plots

lel

Fig. 8. Plots of @ vs. the absolute value of ¢ in the case R; = 1
for some values of Z and Bi, = Bi, = 10.

0.5

0.08

0.06

0.04

0.02

-0.02}

Fig. 9. Plots of # and 0 vs. y in the case R; = 1, for some values
of ¢, E =300, Bi;, = 0.1 and Bi, = 10.
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which appear in Fig. 9 refer to E = 300 and are obtained
with 27 terms of the perturbation series. Figure 9 shows
that, when ¢ increases, 0 increases more at y = — 1/4 than
aty = 1/4,i.e., 0 increases more at the wall which has the
smaller external-convection coefficient. In particular, for
¢ = 1.5and ¢ = 1.8, the temperature at y = — 1/4 exceeds
thataty = 1/4, although T, < T,. A comparison between
Fig. 9 and Figs 6-7 reveals that the effect of ¢ on u and
on 0, for a fixed value of E, becomes stronger if either Bi,
or Bi, becomes smaller.

Let us now consider the condition T, = T,, R; = 0.
Equations (25)—(28) show that the dimensionless velocity
u is a function of y which depends only on the dimen-
sionless parameters ¢, Bi; and Bi,. Therefore, on account
of equation (30), also 20 is a function of y which depends
only on ¢, Bi, and Bi,. Moreover, equation (36) ensures
that E Nu, and E Nu, are uniquely determined by e, Bi,
and Bi,. As in the case of asymmetric fluid temperatures,
both ¢ and E are positive when the flow is upward, while
they are negative when the flow is downward.

In Figs 10 and 11, the dimensionless velocity « and the
product E0 are plotted vs. y for some values of ¢. Figure
10 refers to Bi, = Bi, = 10, while Fig. 11 refers to
Bi; = 0.1 and Bi, = 10. Figures 10 and 11 show that, at
any given position, both u and Z6 are increasing functions
of &. As in the case of asymmetric fluid temperatures, the
effect of viscous dissipation on the dimensionless velocity
profile and on the dimensionless temperature profile is

05¢

30

20

[11

10

-0.2 -0.1 0 0.1 0.2

Fig. 10. Plots of u and Z0 vs. y in the case R, = 0, for some
values of ¢ and Bi, = Bi, = 10.

Bij=0.1, Bi,=10

[xl

-0.2 -0.1 0 0.1 0.2

Fig. 11. Plots of u and 20 vs. y in the case R;= 0, for some
values of &, Bi; = 0.1 and Bi, = 10.

more significant in the case of upward flow (¢ > 0) than
in the case of downward flow (¢ <0), and becomes
stronger if either Bi, or Bi, becomes smaller.

Clearly, when Bi, = Bi, the dimensionless temperature
profile is symmetric, so that, on account of equation (36),
Nu, = Nu, = Nu. Values of E Nu for this condition are
reported in Table 1 for several values of ¢ and Bi. The
table shows that E Nu is an increasing function of ¢ for
every value of Bi, and that the effect of ¢ on E Nu becomes
stronger when the Biot number becomes lower. Finally,
the effect of ¢ on E Nu is more important for upward flow
than for downward flow. The values of & Nu reported in
Table 1 have been obtained with 30 terms of the per-
turbation series for Bi > 20, with 35 terms for Bi = 10,
and with 46 terms for Bi = 7. In each case, evaluations
with 27, 32 and 43 perturbation terms, respectively for
Bi > 20, Bi = 10 and Bi = 7, have given the same results
as those reported in Table 1, at least for the digits which
appear in the table. The results obtained for Bi = 10° are
in perfect agreement with those reported in ref. [11] for
the boundary condition of prescribed wall temperatures.

6. Conclusions

The laminar and fully developed mixed convection
with viscous dissipation in a plane vertical channel has
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Table 1

Values of E Nu as a function of ¢ and Bi, for R, = 0 and Bi, = Bi, (completely symmetric case)

Bi=10° Bi =50 Bi=20 Bi=10 Bi=17
€ = Nu = Nu E Nu E Nu = Nu
—4.0 —43.211 —41.790 —39.858 —37.072 —35.027
—3.5 —38.275 —37.149 —35.603 —33.343 —31.660
—-3.0 —33.219 —32.362 —31.173 —29.409 —28.077
—2.5 —28.036 —27.420 —26.554 —25.250 —24.249
—-2.0 —22.722 —22.313 —21.731 —20.840 —20.143
—1.5 —17.269 —17.030 —16.685 —16.148 —15.720
—1.0 —11.669 —11.559 —11.398 —11.141 —10.932
—-0.5 —5.916 —5.887 —5.845 —5.775 —5.718

0.0 0.000 0.000 0.000 0.000 0.000
0.5 6.087 6.119 6.166 6.248 6.320
1.0 12.356 12.487 12.690 13.048 13.375
1.5 18.817 19.125 19.612 20.499 21.346
2.0 25.482 26.056 26.983 28.733 30.491
2.5 32.365 33.306 34.860 37.923 41.196
3.0 39.478 40.904 43.315 48.309 54.078
3.5 46.839 48.885 52.437 60.238 70.231
4.0 54.464 57.286 62.335 74.234 91.906
been analysed. The boundary condition of convective Acknowledgement

heat exchange with an external fluid at each boundary
plane has been considered. The simpler cases of either
negligible viscous dissipation or negligible buoyancy
forces have been solved analytically. The combined
effects of buoyancy forces and viscous dissipation have
been studied by a perturbation series method. The pure
number ¢ = Br Gr/Re has been chosen as the perturbation
parameter. Both the case of asymmetric fluid tem-
peratures (R; = 1), with either equal or different Biot
numbers, and the case of symmetric fluid temperatures
(R = 0), with either equal or different Biot numbers,
have been considered. The results can be summarized as
follows. For upward flow, both the dimensionless vel-
ocity u and the dimensionless temperature 0, at each
position, are increasing function of ¢, i.e., of the viscous-
dissipation parameter. The effect of ¢ on u, on 6 and on
the Nusselt numbers increases when at least one of the
Biot number decreases. For downward flow, at each pos-
ition, u is a decreasing function of |¢| while 6 is an increas-
ing function of |e|. The effect of ¢ on u, on 0 and on the
Nusselt numbers is more relevant for upward flow than
for downward flow. In the completely symmetric case
(R =0, Bi, = Bi,) the value of E Nu is uniquely deter-
mined by ¢ and Bi. A table of Z Nu as a function of ¢ and
Bi has been reported. The table shows that, for each
value of Bi, E Nu is an increasing function of ¢, both for
downward and for upward flow. The effect of ¢ on E Nu
for upward flow is more relevant than that for downward
flow, and becomes stronger when the Biot number
decreases.

The author is grateful to Professor Antonio Barletta
for helpful discussions on some of the topics treated in
this paper.

References

[11 Aung W, Worku G. Theory of fully developed, combined
convection including flow reversal. ASME Journal of Heat
Transfer 1986;108:485-8.

Cheng C-H, Kou H-S, Huang W-H. Flow reversal and heat

transfer of fully developed mixed convection in vertical

channels. Journal of Thermophysics and Heat Transfer
1990;4:375-83.

Hamadah TT, Wirtz RA. Analysis of laminar fully

developed mixed convection in a vertical channel with

opposing buoyancy. ASME Journal of Heat Transfer
1991;113:507-10.

[4] Tao LN. On combined free and forced convection in chan-
nels. ASME Journal of Heat Transfer 1960;82:233-8.

[S] Aung W, Worku G. Developing flow and flow reversal
in a vertical channel with asymmetric wall temperatures.
ASME Journal of Heat Transfer 1986;108:299-304.

[6] Aung W, Worku G. Mixed convection in ducts with asym-
metric wall heat fluxes. ASME Journal of Heat Transfer
1987;109:947-51.

[7] Ingham DB, Keen DJ, Heggs PJ. Flows in vertical channels
with asymmetric wall temperatures and including situations
where reverse flows occur. ASME Journal of Heat Transfer
1988;110:910-7.

[8] Aung W. Mixed convection in internal flow. In: Kakag S,

2

—

3

—_



[9

—

[10]

E. Zanchini/Int. J. Heat Mass Transfer 41 (1998) 3949-3959 3959

Shah RK, Aung W, editors. Handbook of Single-Phase
Convective Heat Transfer. New York : Wiley, 1987, Chap.
15.

Barletta A. Fully developed laminar forced convection in
circular ducts for power-law fluids with viscous dissipation.
International Journal of Heat and Mass Transfer
1997;40:15-26.

Zanchini E. Effect of viscous dissipation on the asymptotic
behaviour of laminar forced convection in circular tubes.

International Journal of Heat and Mass Transfer
1997;40:169-78.

[11] Barletta A. Laminar mixed convection with viscous dis-
sipation in a vertical channel. International Journal of Heat
and Mass Transfer, 1998; 41.

[12] Arpaci VS, Larsen PS. Convection Heat Transfer. Engle-
wood Cliffs, NJ: Prentice-Hall, 1984. pp. 51-4.

[13] Aziz A, Na TY. Perturbation Methods in Heat Transfer,
Ist ed. New York : Hemisphere, 1984.



